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Abstract
In this paper, we shall calculate the first order cyclic cohomology
group HC(£(S),£*(S)) where S is a certain commutative, O-
cancellative, nil *-semigroup.
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1 Introduction
We follow (Dales, 2000) and (Ghlaio, 2018) to recall some definitions and

some preliminaries regarding the theory of Banach Algebras, Cyclic
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Cohomology and the commutative semigroup algebras £ 1(S), where S is a
commutative, 0-cancellative, nil*-semigroup, as also introduced in (Read,
2011).
Let A be a Banach algebra, and let X be a Banach A-bimodule. A
linear map D: A — X is a derivation if it satisfies the equation:
D(ab) =a-Db+Da-b (a,b€A).

In this paper we shall only consider bounded derivations. Given x € X and
define the map §,: A — X by the equation:
6y(a)=a-x—x-a (a€A).

These derivations are inner derivations.

Let X* be the dual space of X. Then X* is a Banach A-bimodule with respect
to the operations given by

(x,a-A)=(x-a,A) and (x,A-a)=(a-x,A) (@a€EAx€E
X,A€X").

A Banach algebra A is amenable if every bounded derivation D from A into
a dual Banach A-bimodule X* is inner, for each Banach A-bimodule X. A
Banach algebra A is a Banach A-bimodule over itself. Then a Banach
algebra A is weakly amenable if every bounded derivation D: A = A™ is
inner.

A linear map T: A = A* is cyclic if T(ay)(ay) = (—1)T(ay)(a,) for all
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ay, a, € A ; in other words, (aq, T(ay)) +{a;,T(ay)) =0 (ayga, €A).
In particular, {(a,T(a)) =0 (a€ A).

The space of all bounded, cyclic derivations from A to A" is denoted by
ZC (A, A"), and the set of all cyclic inner derivations from A to A* is
denoted by V'€ 1(A, A*). It can be seen that every inner derivation is cyclic,
and so NC1(A,A*) = N 1(A,A*). The first-order cyclic cohomology
group is defined by

HCYA,A) =ZCHA,A)/NCA,A) = ZCHA,A)/
N (A, A").

Let S be a non-empty set, and let s be an element of S. The characteristic
function of {s} is denoted by &,. We define the Banach space

Y8 ={f1S>C [ =Xses a6, Lses lag| < oo},
where [|f || = Xges lag| < oo.

The dual space of A = £1(S) isA = £*(S), where
£2©) = {f:5 = € 17l = suplf &)l < oo},
NS

with the duality given by:

(f,2) = Eses F(A(s) (F €L1(S),A€£(5)).
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Let S be a semigroup. Then the convolution product of two elements f and

g in the Banach space £ () is defined by the formula:

f*xg= (ZSES aSSS) * (ZtES .Bt6t) =2 {(Zst:rES asﬂt)dr}-

The inner sum will vanish if there are no s and t such that st = r.
Clearly, (£1(5),%) is a Banach algebra; it is called the semigroup
algebra of S.
We shall need to use the following remark:
Remark 1.1 Let S be a semigroup, and take g to be a functionon § X S .

Fora,b € S, define
Ty(84,6p) = g(a,b),

and then extend T, to be a bilinear function on £4 (S) x £ (S) . In the case
where g is bounded by M , T, extends to a bounded, bilinear functional on
21(S) x£1(S).
Explicitly,

|Tg (Zi a;8ay X :Bj6bj)| = |2 aiBig(ayby)| <
MY, la;| X; |.3j| :

Now define T,: £1(S) —» £ “(S) by
(hTo(N) = Ty(fLh) (fLhe€'(S)).

Then T‘;] is a bounded linear map and
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(65, T3(82)) = g(a,b) (ab€S).

Throughout the paper, S denotes a countable commutative nil *-semigroup
which is the unitization of a nil semigroup S~ (that is, a semigroup S~ with
zero such that for all x € S7, there isan n € N such that x™ = o ), and which

Is zero-cancellative (that is, for all a,b,c € S, ab = ac # o implies b = ¢).

Let S be the semigroup T,, = {e,a,a?, ...,a" 1, a™ = o} forn € N withn >
2. We note that T, is finite, commutative, 0-cancellative, nilﬁ-semigroup.

From now on we fix the notation A,, for the semigroup algebra ¢ 1(T,).
In our paper we shall prove that HC (A, A%) = {0} .

Lemmal.2 LetD:A, — A; beaderivation. Then
D(8s) = 2e86 + 465 + -+ Ay 2842 . (L1)

for some 1., 14, ..., 1,_, € C. Each such D gives a unique derivation.

Proof Note that for r < nand fora,b € S, we have

i} , 0 if r<k
<6b'6ak ) 6ar> = (6ak-b'6ar) - {<6b;6;r—k> if r=>k

Indeed we see that
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0 if r<k
k. g% _
ok -0y = S if ok

When r = n, we have that 8« - 85 = 85 + Sgn-1+ =+ & nk .
Suppose that D: A,, — A, is a derivation (automatically continuous because
A, is finite dimensional).
So we see that D(5,) = 0 because 6, is an idempotent. If D(6,) isasin (1.1),
then we will have (for all k > 0)

D(84) = ki1 - D(8s)

= k-1 (Aebp + -+ + Ap_26,n-2)

=k- 22;13—1 /17‘6;r—k+1 .

These equations are consistent, because when k > n we have that D (6 ,x) =
0=D(5,) .
We must have that D (Q;—¢ Ax0,k) = Xk=o D (6,%) . We then see that

D6k - 6,0) = D(S k1) = (k + 1)6 jivi-1 - D(64) = 6,6 - D(6,1) +
D(6 k) - 6,4

forall k,1 > 0 and in fact even when k or [ is zero. So D is a derivation.
Conversely, if D: A, = A, isaderivation then the most general conceivable
form for D(6,) is D(8,) = Aebs + Xi-1 A6, however we will need (since

6,n = 6, 1S idempotent)
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0 = D(Bgn) = nBgnes - D(8,) = Any5 + An(85 + 85+ -+ +
8ins)
SOAn_l =An =0.

Thus the lemma is proved.

2 The main result
Now we shall prove our result in the following Theorem
Theorem 2.1 Let A, = £(T,), wheren = 2. Then HC 1(A,, A}) =

{0}.

Proof Take a derivation D:A, = A;. Then D is bounded because the
semigroup algebra A,, is finite dimensional.
We have D(8,) = D(6,) = 0, and, by Lemma 1.2, we have
D(84) = Ae65 + 4165 + -+ + A28, n—2
for some 1., 14, ..., 4,_, € C.

We know that D is cyclic if and only if satisfies the equation:

(fL,D@N+(9.D(fN=0 (f.geA). (21)

Take f =6 cand g = &, for k = 0,...,n — 1, where a° = e and §,0 = &,.
Then

(f.D(@)) + (g, D(f)} = (8, D(82)) + {80, D(86))

= (8,44, D(8,)) + (84, k8 k-1D(8,))

= (8, D(8a)) + k(8a, 41D (8a))
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= (k + 1)(8,, D(84)),
and so, by (2.1), we have
(8gies e85 + 2185 + -+ A8k + -+ + Ap_p8in—2) =0,
hence A,=0 for all k=0,..,n—2. So D=0. Therefore
HC (A, A*) = {0}. Thus the theorem is proved.

References

Ghlaio H. M., (2018),Cyclic weak amenability of some commutative
semigroup algebras, Journal of Science, 07, 35-38.

Ghlaio H. M. and Read C. J., (2011), Irregular abelian semigroups with
weakly amenable semigroup algebra, Semigroup Forum, 82, 367-383.
Dales H. G.,(2000), Banach algebras and automatic continuity, London

Math. Soc. Monographs, Volume 24, Clarendon press, Oxford,.

Azzaytuna University Journal (45) Mar. 2023



