The first order cyclic cohomology group of some commutative semigroup algebras

Hussein M. GHLAIO Department of Mathematics, University of Misurata, Misurata, Libya

ملخص باللغة العربية

في هذه الورقة سنحسب زمرة الكوهومولوجي الدائرية من الرتبة الأولى الورقة سنحسب S حيث S حيث S حيث S حيث الأولى الأولى المنافقة المنافقة عن المنافقة ا

Abstract

In this paper, we shall calculate the first order cyclic cohomology group $\mathcal{HC}^1(\ell^1(S), \ell^\infty(S))$ where S is a certain commutative, 0-cancellative, nil^{\sharp} -semigroup.

Keywords: semigroup, nil-semigroup, 0-cancellative semigroup, semigroup algebra, cyclic cohomology group.

1 Introduction

We follow (Dales, 2000) and (Ghlaio, 2018) to recall some definitions and some preliminaries regarding the theory of Banach Algebras, Cyclic

Cohomology and the commutative semigroup algebras $\ell^1(S)$, where S is a commutative, 0-cancellative, nil^{\sharp} -semigroup, as also introduced in (Read, 2011).

Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule. A linear map $D: \mathcal{A} \to X$ is a *derivation* if it satisfies the equation:

$$D(ab) = a \cdot Db + Da \cdot b \quad (a, b \in \mathcal{A}).$$

In this paper we shall only consider bounded derivations. Given $x \in X$ and define the map $\delta_x : \mathcal{A} \to X$ by the equation:

$$\delta_x(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A}).$$

These derivations are *inner* derivations.

Let X^* be the *dual space* of X. Then X^* is a Banach \mathcal{A} -bimodule with respect to the operations given by

$$\langle x, a \cdot \lambda \rangle = \langle x \cdot a, \lambda \rangle \quad and \quad \langle x, \lambda \cdot a \rangle = \langle a \cdot x, \lambda \rangle \quad (a \in \mathcal{A}, x \in X, \lambda \in X^*).$$

A Banach algebra \mathcal{A} is *amenable* if every bounded derivation D from \mathcal{A} into a dual Banach \mathcal{A} -bimodule X^* is inner, for each Banach \mathcal{A} -bimodule X. A Banach algebra \mathcal{A} is a Banach \mathcal{A} -bimodule over itself. Then a Banach algebra \mathcal{A} is *weakly amenable* if every bounded derivation $D: \mathcal{A} \to \mathcal{A}^*$ is inner.

A linear map $T: \mathcal{A} \to \mathcal{A}^*$ is cyclic if $T(a_1)(a_0) = (-1)T(a_0)(a_1)$ for all

 $a_0, a_1 \in \mathcal{A}$; in other words, $\langle a_0, T(a_1) \rangle + \langle a_1, T(a_0) \rangle = 0$ $(a_0, a_1 \in \mathcal{A})$. In particular, $\langle a, T(a) \rangle = 0$ $(a \in \mathcal{A})$.

The space of all bounded, cyclic derivations from \mathcal{A} to \mathcal{A}^* is denoted by $\mathcal{ZC}^1(\mathcal{A},\mathcal{A}^*)$, and the set of all cyclic inner derivations from \mathcal{A} to \mathcal{A}^* is denoted by $\mathcal{NC}^1(\mathcal{A},\mathcal{A}^*)$. It can be seen that every inner derivation is cyclic, and so $\mathcal{NC}^1(\mathcal{A},\mathcal{A}^*) = \mathcal{N}^1(\mathcal{A},\mathcal{A}^*)$. The *first-order cyclic cohomology group* is defined by

$$\mathcal{HC}^{1}(\mathcal{A},\mathcal{A}^{*})=\mathcal{ZC}^{1}(\mathcal{A},\mathcal{A}^{*})/\mathcal{NC}^{1}(\mathcal{A},\mathcal{A}^{*})=\mathcal{ZC}^{1}(\mathcal{A},\mathcal{A}^{*})/\mathcal{NC}^{1}(\mathcal{A},\mathcal{A}^{*})$$
.

Let S be a non-empty set, and let s be an element of S. The characteristic function of $\{s\}$ is denoted by δ_s . We define the *Banach space*

$$\ell^1(S) := \{ f : S \to \mathbb{C}, \quad f = \sum_{s \in S} \alpha_s \delta_s, \sum_{s \in S} |\alpha_s| < \infty \},$$

where $||f|| = \sum_{s \in S} |\alpha_s| < \infty$.

?

The dual space of $\mathcal{A} = \ell^{1}(S)$ is $\mathcal{A} = \ell^{\infty}(S)$, where

$$\ell^{\infty}(S) = \left\{ f : S \to \mathbb{C}, \quad ||f|| = \sup_{s \in S} |f(s)| < \infty \right\},$$

with the duality given by:

$$\langle f, \lambda \rangle = \sum_{s \in S} f(s)\lambda(s) \quad (f \in \ell^1(S), \lambda \in \ell^\infty(S)).$$

Let S be a semigroup. Then the *convolution product* of two elements f and g in the Banach space $\ell^1(S)$ is defined by the formula:

$$f * g = (\sum_{s \in S} \alpha_s \delta_s) * (\sum_{t \in S} \beta_t \delta_t) = \sum \{(\sum_{st=r \in S} \alpha_s \beta_t) \delta_r\}.$$

The inner sum will vanish if there are no s and t such that st = r.

Clearly, $(\ell^1(S),*)$ is a Banach algebra; it is called the *semigroup* algebra of S.

We shall need to use the following remark:

Remark 1.1 Let S be a semigroup, and take g to be a function on $S \times S$. For $a, b \in S$, define

$$T_g(\delta_a, \delta_b) = g(a, b)$$
,

and then extend T_g to be a bilinear function on $\ell_0^1(S) \times \ell_0^1(S)$. In the case where g is bounded by M, T_g extends to a bounded, bilinear functional on $\ell^1(S) \times \ell^1(S)$.

Explicitly,

$$\left|T_g\left(\sum_i \alpha_i \delta_{a_i}, \sum_j \beta_j \delta_{b_j}\right)\right| = \left|\sum_{i,j} \alpha_i \beta_j g(a_i, b_j)\right| \le M \sum_i \left|\alpha_i\right| \sum_j \left|\beta_j\right|.$$

Now define
$$\widetilde{T_g}\colon \ell^1(S) \to \ell^\infty(S)$$
 by
$$\left\langle h, \widetilde{T_g}(f) \right\rangle = T_g(f,h) \quad (f,h \in \ell^1(S)) \; .$$

Then \widetilde{T}_g is a bounded linear map and

$$\langle \delta_b, \widetilde{T}_g(\delta_a) \rangle = g(a, b) \quad (a, b \in S).$$

Throughout the paper, S denotes a countable commutative nil^{\sharp} -semigroup which is the unitization of a nil semigroup S^- (that is, a semigroup S^- with zero such that for all $x \in S^-$, there is an $n \in \mathbb{N}$ such that $x^n = o$), and which is zero-cancellative (that is, for all $a, b, c \in S$, $ab = ac \neq o$ implies b = c).

Let S be the semigroup $T_n = \{e, a, a^2, ..., a^{n-1}, a^n = o\}$ for $n \in \mathbb{N}$ with $n \ge 2$. We note that T_n is finite, commutative, 0-cancellative, nil^{\sharp} -semigroup. From now on we fix the notation \mathcal{A}_n for the semigroup algebra $\ell^1(T_n)$.

In our paper we shall prove that $\mathcal{HC}^{1}(\mathcal{A}_{n},\mathcal{A}_{n}^{*})=\{0\}$.

Lemma 1.2 Let $D: \mathcal{A}_n \to \mathcal{A}_n^*$ be a derivation. Then

$$D(\delta_a) = \lambda_e \delta_e^* + \lambda_1 \delta_a^* + \dots + \lambda_{n-2} \delta_{a^{n-2}}^*. \tag{1.1}$$

for some $\lambda_e, \lambda_1, \dots, \lambda_{n-2} \in \mathbb{C}$. Each such D gives a unique derivation.

Proof Note that for r < n and for $a, b \in S$, we have

$$\left\langle \delta_b, \delta_{a^k} \cdot \delta_{a^r}^* \right\rangle = \left\langle \delta_{a^k \cdot b}, \delta_{a^r}^* \right\rangle = \begin{cases} 0 & \text{if } r < k \\ \left\langle \delta_b, \delta_{a^{r-k}}^* \right\rangle & \text{if } r \geq k \end{cases}$$

Indeed we see that

$$\delta_a^k \cdot \delta_{a^r}^* = \begin{cases} 0 & \text{if } r < k \\ \delta_{a^{r-k}}^* & \text{if } r \ge k \end{cases}$$

When r=n , we have that $\delta_{a^k}\cdot\delta_o^*=\delta_o^*+\delta_{a^{n-1}}^*+\cdots+\delta_{a^{n-k}}^*$.

Suppose that $D: \mathcal{A}_n \to \mathcal{A}_n^*$ is a derivation (automatically continuous because \mathcal{A}_n is finite dimensional).

So we see that $D(\delta_e) = 0$ because δ_e is an idempotent. If $D(\delta_a)$ is as in (1.1), then we will have (for all k > 0)

$$\begin{split} &D(\delta_{a^k}) = k \delta_{a^{k-1}} \cdot D(\delta_a) \\ &= k \delta_{a^{k-1}} \cdot (\lambda_e \delta_e^* + \dots + \lambda_{n-2} \delta_{a^{n-2}}^*) \\ &= k \cdot \sum_{r=k-1}^{n-2} \lambda_r \delta_{a^{r-k+1}}^* \,. \end{split}$$

These equations are consistent, because when $k \ge n$ we have that $D(\delta_{a^k}) = 0 = D(\delta_a)$.

We must have that $D(\sum_{k=0}^n \lambda_k \delta_{a^k}) = \sum_{k=0}^n \lambda_k D(\delta_{a^k})$. We then see that

$$D(\delta_{a^k} \cdot \delta_{a^l}) = D(\delta_{a^{k+l}}) = (k+l)\delta_{a^{k+l-1}} \cdot D(\delta_a) = \delta_{a^k} \cdot D(\delta_{a^l}) + D(\delta_{a^k}) \cdot \delta_{a^l}$$

for all k, l > 0 and in fact even when k or l is zero. So D is a derivation. Conversely, if $D: \mathcal{A}_n \to \mathcal{A}_n^*$ is a derivation then the most general conceivable form for $D(\delta_a)$ is $D(\delta_a) = \lambda_e \delta_e^* + \sum_{r=1}^n \lambda_r \delta_{a^r}^*$ however we will need (since $\delta_{a^n} = \delta_o$ is idempotent)

$$0 = D(\delta_{a^n}) = n\delta_{a^{n-1}} \cdot D(\delta_a) = \lambda_{n-1}\delta_e^* + \lambda_n(\delta_o^* + \delta_a^* + \dots +$$

$$\delta_{a^{n-1}}^*$$

so
$$\lambda_{n-1} = \lambda_n = 0$$
.

Thus the lemma is proved.

2 The main result

Now we shall prove our result in the following Theorem

Theorem 2.1 Let $\mathcal{A}_n = \ell^1(T_n)$, where $n \geq 2$. Then $\mathcal{HC}^1(\mathcal{A}_n, \mathcal{A}_n^*) = \{0\}$.

Proof Take a derivation $D: \mathcal{A}_n \to \mathcal{A}_n^*$. Then D is bounded because the semigroup algebra \mathcal{A}_n is finite dimensional.

We have $D(\delta_e) = D(\delta_o) = 0$, and, by Lemma 1.2, we have

$$D(\delta_a) = \lambda_e \delta_e^* + \lambda_1 \delta_a^* + \dots + \lambda_{n-2} \delta_{a^{n-2}}^*$$

for some $\lambda_e, \lambda_1, \dots, \lambda_{n-2} \in \mathbb{C}$.

We know that D is cyclic if and only if satisfies the equation:

$$\langle f, D(g) \rangle + \langle g, D(f) \rangle = 0 \quad (f, g \in \mathcal{A}).$$
 (2.1)

Take $f=\delta_{a^k}$ and $g=\delta_a$ for $k=0,\ldots,n-1,$ where $a^0=e$ and $\delta_{a^0}=\delta_e.$ Then

$$\begin{split} &\langle f, D(g) \rangle + \langle g, D(f) \rangle = \left\langle \delta_{a^k}, D(\delta_a) \right\rangle + \left\langle \delta_a, D(\delta_{a^k}) \right\rangle \\ &= \left\langle \delta_{a^k}, D(\delta_a) \right\rangle + \left\langle \delta_a, k \delta_{a^{k-1}} D(\delta_a) \right\rangle \\ &= \left\langle \delta_{a^k}, D(\delta_a) \right\rangle + k \left\langle \delta_a, \delta_{a^{k-1}} D(\delta_a) \right\rangle \end{split}$$

$$= (k+1)\langle \delta_{a^k}, D(\delta_a) \rangle$$
,

and so, by (2.1), we have

$$\left<\delta_{a^k},\lambda_e\delta_e^*+\lambda_1\delta_a^*+\cdots+\lambda_k\delta_{a^k}^*+\cdots+\lambda_{n-2}\delta_{a^{n-2}}^*\right>=0$$
 ,

hence $\lambda_k=0$ for all $k=0,\ldots,n-2$. So D=0. Therefore $\mathcal{HC}^1(\mathcal{A},\mathcal{A}^*)=\{0\}$. Thus the theorem is proved.

References

Ghlaio H. M., (2018), Cyclic weak amenability of some commutative semigroup algebras, *Journal of Science*, **07**, 35-38.

Ghlaio H. M. and Read C. J., (2011), Irregular abelian semigroups with weakly amenable semigroup algebra, *Semigroup Forum*, **82**, 367-383.

Dales H. G.,(2000), *Banach algebras and automatic continuity*, London Math. Soc. Monographs, Volume **24**, Clarendon press, Oxford,.