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 ملخص باللغة العربية 

الرتبة  من  الدائرية  الكوهومولوجي  زمرة  سنحسب  الورقة  هذه  في 

ℋ𝒞الأولى  1(ℓ 1(𝑆), ℓ ∞(𝑆))        حيثS     هي شبه زمرة تبديلية وقابلة للاختصار صفريا ومرفقة

     بعنصر وحدة. 

Abstract 

 In this paper, we shall calculate the first order cyclic cohomology 

group ℋ𝒞  1(ℓ 1(𝑆), ℓ ∞(𝑆)) where 𝑆 is a certain commutative, 0-

cancellative, 𝑛𝑖𝑙 ♯-semigroup.  

 Keywords: semigroup, nil-semigroup, 0-cancellative semigroup, semigroup 

algebra, cyclic cohomology group. 

   

1  Introduction  

We follow (Dales, 2000) and (Ghlaio, 2018) to recall some definitions and 

some preliminaries regarding the theory of Banach Algebras, Cyclic 
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Cohomology and the commutative semigroup algebras ℓ 1(𝑆) , where 𝑆 is a 

commutative, 0-cancellative, 𝑛𝑖𝑙 ♯-semigroup, as also introduced in (Read, 

2011). 

Let 𝒜 be a Banach algebra, and let 𝑋 be a Banach 𝒜-bimodule. A 

linear map 𝐷: 𝒜 → 𝑋 is a derivation if it satisfies the equation:  

 𝐷(𝑎𝑏) = 𝑎 ⋅ 𝐷𝑏 + 𝐷𝑎 ⋅ 𝑏    (𝑎, 𝑏 ∈ 𝒜) . 

 

In this paper we shall only consider bounded derivations. Given 𝑥 ∈ 𝑋 and 

define the map 𝛿𝑥: 𝒜 → 𝑋 by the equation:  

 𝛿𝑥(𝑎) = 𝑎 ⋅ 𝑥 − 𝑥 ⋅ 𝑎    (𝑎 ∈ 𝒜). 

These derivations are inner derivations. 

 

Let 𝑋∗ be the dual space of 𝑋. Then 𝑋∗ is a Banach 𝒜-bimodule with respect 

to the operations given by  

 〈𝑥, 𝑎 ⋅ 𝜆〉 = 〈𝑥 ⋅ 𝑎, 𝜆〉      𝑎𝑛𝑑    〈𝑥, 𝜆 ⋅ 𝑎〉 = 〈𝑎 ⋅ 𝑥, 𝜆〉    (𝑎 ∈ 𝒜, 𝑥 ∈

𝑋, 𝜆 ∈ 𝑋∗) . 

 

A Banach algebra 𝒜 is amenable if every bounded derivation 𝐷 from 𝒜 into 

a dual Banach 𝒜-bimodule 𝑋∗ is inner, for each Banach 𝒜-bimodule 𝑋. A 

Banach algebra 𝒜 is a Banach 𝒜-bimodule over itself. Then a Banach 

algebra 𝒜 is weakly amenable if every bounded derivation 𝐷: 𝒜 → 𝒜∗ is 

inner. 

A linear map 𝑇: 𝒜 → 𝒜∗ is cyclic if 𝑇(𝑎1)(𝑎0) = (−1)𝑇(𝑎0)(𝑎1) for all 
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𝑎0, 𝑎1 ∈ 𝒜 ; in other words, ⟨𝑎0, 𝑇(𝑎1)⟩ + ⟨𝑎1, 𝑇(𝑎0)⟩ = 0    (𝑎0, 𝑎1 ∈ 𝒜) . 

In particular, ⟨𝑎, 𝑇(𝑎)⟩ = 0    (𝑎 ∈ 𝒜) . 

 

The space of all bounded, cyclic derivations from 𝒜 to 𝒜∗ is denoted by 

𝒵𝒞  1(𝒜, 𝒜∗), and the set of all cyclic inner derivations from 𝒜 to 𝒜∗ is 

denoted by 𝒩𝒞  1(𝒜, 𝒜∗). It can be seen that every inner derivation is cyclic, 

and so 𝒩𝒞  1(𝒜, 𝒜∗) = 𝒩  1(𝒜, 𝒜∗). The first-order cyclic cohomology 

group is defined by  

 ℋ𝒞  1(𝒜, 𝒜∗) = 𝒵𝒞  1(𝒜, 𝒜∗)/𝒩𝒞  1(𝒜, 𝒜∗) = 𝒵𝒞  1(𝒜, 𝒜∗)/

𝒩  1(𝒜, 𝒜∗) . 

  

Let 𝑆 be a non-empty set, and let 𝑠 be an element of 𝑆. The characteristic 

function of {𝑠} is denoted by 𝛿𝑠. We define the Banach space  

 ℓ 1(𝑆): = {𝑓: 𝑆 → ℂ,    𝑓 = ∑𝑠∈𝑆 𝛼𝑠𝛿𝑠 , ∑𝑠∈𝑆 |𝛼𝑠| < ∞} , 

where ‖𝑓‖ = ∑𝑠∈𝑆 |𝛼𝑠| < ∞ . 

 

The dual space of 𝒜 = ℓ 1(𝑆) is 𝒜 = ℓ ∞(𝑆), where  

 ℓ ∞(𝑆) = {𝑓: 𝑆 → ℂ,    ‖𝑓‖ = sup
𝑠∈𝑆

|𝑓(𝑠)| < ∞} , 

 with the duality given by: 

  

 ⟨𝑓, 𝜆⟩ = ∑𝑠∈𝑆 𝑓(𝑠)𝜆(𝑠)    (𝑓 ∈ ℓ 1(𝑆), 𝜆 ∈ ℓ ∞(𝑆)) . 
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Let 𝑆 be a semigroup. Then the convolution product of two elements 𝑓 and 

𝑔 in the Banach space ℓ 1(𝑆) is defined by the formula:  

 

 𝑓 ∗ 𝑔 = (∑𝑠∈𝑆 𝛼𝑠𝛿𝑠) ∗ (∑𝑡∈𝑆 𝛽𝑡𝛿𝑡) = ∑ {(∑𝑠𝑡=𝑟∈𝑆 𝛼𝑠𝛽𝑡)𝛿𝑟} . 

 

The inner sum will vanish if there are no 𝑠 and 𝑡 such that 𝑠𝑡 = 𝑟. 

Clearly, (ℓ 1(𝑆),∗) is a Banach algebra; it is called the semigroup 

algebra of 𝑆. 

We shall need to use the following remark:  

Remark 1.1  Let 𝑆 be a semigroup, and take 𝑔 to be a function on 𝑆 × 𝑆 . 

For 𝑎, 𝑏 ∈ 𝑆 , define  

 𝑇𝑔(𝛿𝑎 , 𝛿𝑏) = 𝑔(𝑎, 𝑏) , 

 and then extend 𝑇𝑔 to be a bilinear function on ℓ0
 1(𝑆) × ℓ0

 1(𝑆) . In the case 

where 𝑔 is bounded by 𝑀 , 𝑇𝑔 extends to a bounded, bilinear functional on 

ℓ 1(𝑆) × ℓ 1(𝑆) . 

Explicitly,  

 |𝑇𝑔 (∑𝑖 𝛼𝑖𝛿𝑎𝑖
, ∑𝑗 𝛽𝑗𝛿𝑏𝑗

)| = |∑𝑖,𝑗 𝛼𝑖𝛽𝑗𝑔(𝑎𝑖 , 𝑏𝑗)| ≤

𝑀 ∑𝑖 |𝛼𝑖| ∑𝑗 |𝛽𝑗| . 

 

Now define 𝑇𝑔̃: ℓ 1(𝑆) → ℓ ∞(𝑆) by  

 ⟨ℎ, 𝑇𝑔̃(𝑓)⟩ = 𝑇𝑔(𝑓, ℎ)    (𝑓, ℎ ∈ ℓ 1(𝑆)) . 

Then 𝑇𝑔̃ is a bounded linear map and  
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 ⟨𝛿𝑏 , 𝑇𝑔̃(𝛿𝑎)⟩ = 𝑔(𝑎, 𝑏)    (𝑎, 𝑏 ∈ 𝑆) . 

  

 

Throughout the paper, 𝑆 denotes a countable commutative 𝑛𝑖𝑙 ♯-semigroup 

which is the unitization of a nil semigroup 𝑆− (that is, a semigroup 𝑆− with 

zero such that for all 𝑥 ∈ 𝑆−, there is an 𝑛 ∈ ℕ such that 𝑥𝑛 = 𝑜 ), and which 

is zero-cancellative (that is, for all 𝑎, 𝑏, 𝑐 ∈ 𝑆, 𝑎𝑏 = 𝑎𝑐 ≠ 𝑜 implies 𝑏 = 𝑐). 

 

Let 𝑆 be the semigroup 𝑇𝑛 = {𝑒, 𝑎, 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 = 𝑜} for 𝑛 ∈ ℕ with 𝑛 ≥

2 . We note that 𝑇𝑛 is finite, commutative, 0-cancellative, 𝑛𝑖𝑙 ♯-semigroup. 

From now on we fix the notation 𝒜𝑛 for the semigroup algebra ℓ 1(𝑇𝑛). 

 

In our paper we shall prove that ℋ𝒞  1(𝒜𝑛, 𝒜𝑛
∗ ) = {0}  . 

  

Lemma 1.2  Let 𝐷: 𝒜𝑛 → 𝒜𝑛
∗  be a derivation. Then  

 𝐷(𝛿𝑎) = 𝜆𝑒𝛿𝑒
∗ + 𝜆1𝛿𝑎

∗ + ⋯ + 𝜆𝑛−2𝛿𝑎𝑛−2
∗  . (1.1) 

 for some 𝜆𝑒 , 𝜆1, … , 𝜆𝑛−2 ∈ ℂ . Each such 𝐷 gives a unique derivation.  

 

Proof Note that for 𝑟 < 𝑛 and for 𝑎, 𝑏 ∈ 𝑆 , we have  

 ⟨𝛿𝑏 , 𝛿𝑎𝑘 ⋅ 𝛿𝑎𝑟
∗ ⟩ = ⟨𝛿𝑎𝑘⋅𝑏 , 𝛿𝑎𝑟

∗ ⟩ = {
0 𝑖𝑓  𝑟 < 𝑘

⟨𝛿𝑏 , 𝛿
𝑎𝑟−𝑘
∗ ⟩ 𝑖𝑓   𝑟 ≥ 𝑘

 

 Indeed we see that  
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 𝛿𝑎
𝑘 ⋅ 𝛿𝑎𝑟

∗ = {
0  𝑖𝑓  𝑟 < 𝑘 

𝛿
𝑎𝑟−𝑘
∗ 𝑖𝑓  𝑟 ≥ 𝑘

  

  

When 𝑟 = 𝑛 , we have that 𝛿𝑎𝑘 ⋅ 𝛿𝑜
∗ = 𝛿𝑜

∗ + 𝛿𝑎𝑛−1
∗ + ⋯ + 𝛿

𝑎𝑛−𝑘
∗  . 

Suppose that 𝐷: 𝒜𝑛 → 𝒜𝑛
∗  is a derivation (automatically continuous because 

𝒜𝑛 is finite dimensional). 

So we see that 𝐷(𝛿𝑒) = 0 because 𝛿𝑒 is an idempotent. If 𝐷(𝛿𝑎) is as in (1.1), 

then we will have (for all 𝑘 > 0)  

 𝐷(𝛿𝑎𝑘) = 𝑘𝛿𝑎𝑘−1 ⋅ 𝐷(𝛿𝑎) 

 = 𝑘𝛿𝑎𝑘−1 ⋅ (𝜆𝑒𝛿𝑒
∗ + ⋯ + 𝜆𝑛−2𝛿𝑎𝑛−2

∗ ) 

 = 𝑘 ⋅ ∑𝑛−2
𝑟=𝑘−1 𝜆𝑟𝛿

𝑎𝑟−𝑘+1
∗  . 

 

These equations are consistent, because when 𝑘 ≥ 𝑛 we have that 𝐷(𝛿𝑎𝑘) =

0 = 𝐷(𝛿𝑜) .  

We must have that 𝐷(∑𝑛
𝑘=0 𝜆𝑘𝛿𝑎𝑘) = ∑𝑛

𝑘=0 𝜆𝑘𝐷(𝛿𝑎𝑘) . We then see that 

  

 𝐷(𝛿𝑎𝑘 ⋅ 𝛿𝑎𝑙) = 𝐷(𝛿𝑎𝑘+𝑙) = (𝑘 + 𝑙)𝛿𝑎𝑘+𝑙−1 ⋅ 𝐷(𝛿𝑎) = 𝛿𝑎𝑘 ⋅ 𝐷(𝛿𝑎𝑙) +

𝐷(𝛿𝑎𝑘) ⋅ 𝛿𝑎𝑙 

 

for all 𝑘, 𝑙 > 0 and in fact even when 𝑘 or 𝑙 is zero. So 𝐷 is a derivation. 

Conversely, if 𝐷: 𝒜𝑛 → 𝒜𝑛
∗  is a derivation then the most general conceivable 

form for 𝐷(𝛿𝑎) is 𝐷(𝛿𝑎) = 𝜆𝑒𝛿𝑒
∗ + ∑𝑛

𝑟=1 𝜆𝑟𝛿𝑎𝑟
∗  however we will need (since 

𝛿𝑎𝑛 = 𝛿𝑜 is idempotent)  
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 0 = 𝐷(𝛿𝑎𝑛) = 𝑛𝛿𝑎𝑛−1 ⋅ 𝐷(𝛿𝑎) = 𝜆𝑛−1𝛿𝑒
∗ + 𝜆𝑛(𝛿𝑜

∗ + 𝛿𝑎
∗ + ⋯ +

𝛿𝑎𝑛−1
∗ ) 

so 𝜆𝑛−1 = 𝜆𝑛 = 0 . 

Thus the lemma is proved.          

 

2  The main result 

Now we shall prove our result in the following Theorem 

Theorem 2.1  Let 𝒜𝑛 = ℓ 1(𝑇𝑛), where 𝑛 ≥ 2 . Then ℋ𝒞  1(𝒜𝑛, 𝒜𝑛
∗ ) =

{0} .  

 

Proof Take a derivation 𝐷: 𝒜𝑛 → 𝒜𝑛
∗ . Then 𝐷 is bounded because the 

semigroup algebra 𝒜𝑛 is finite dimensional. 

We have 𝐷(𝛿𝑒) = 𝐷(𝛿𝑜) = 0, and, by Lemma 1.2, we have  

 𝐷(𝛿𝑎) = 𝜆𝑒𝛿𝑒
∗ + 𝜆1𝛿𝑎

∗ + ⋯ + 𝜆𝑛−2𝛿𝑎𝑛−2
∗  

for some 𝜆𝑒 , 𝜆1, … , 𝜆𝑛−2 ∈ ℂ . 

We know that 𝐷 is cyclic if and only if satisfies the equation:  

 ⟨𝑓, 𝐷(𝑔)⟩ + ⟨𝑔, 𝐷(𝑓)⟩ = 0    (𝑓, 𝑔 ∈ 𝒜) . (2.1) 

 

Take 𝑓 = 𝛿𝑎𝑘 and 𝑔 = 𝛿𝑎 for 𝑘 = 0, … , 𝑛 − 1, where 𝑎0 = 𝑒 and 𝛿𝑎0 = 𝛿𝑒. 

Then  

 ⟨𝑓, 𝐷(𝑔)⟩ + ⟨𝑔, 𝐷(𝑓)⟩ = ⟨𝛿𝑎𝑘 , 𝐷(𝛿𝑎)⟩ + ⟨𝛿𝑎 , 𝐷(𝛿𝑎𝑘)⟩ 

 = ⟨𝛿𝑎𝑘 , 𝐷(𝛿𝑎)⟩ + ⟨𝛿𝑎 , 𝑘𝛿𝑎𝑘−1𝐷(𝛿𝑎)⟩ 

 = ⟨𝛿𝑎𝑘 , 𝐷(𝛿𝑎)⟩ + 𝑘⟨𝛿𝑎 , 𝛿𝑎𝑘−1𝐷(𝛿𝑎)⟩ 
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 = (𝑘 + 1)⟨𝛿𝑎𝑘 , 𝐷(𝛿𝑎)⟩ , 

 and so, by (2.1), we have  

 ⟨𝛿𝑎𝑘 , 𝜆𝑒𝛿𝑒
∗ + 𝜆1𝛿𝑎

∗ + ⋯ + 𝜆𝑘𝛿
𝑎𝑘
∗ + ⋯ + 𝜆𝑛−2𝛿𝑎𝑛−2

∗ ⟩ = 0 , 

 hence 𝜆𝑘 = 0 for all 𝑘 = 0, … , 𝑛 − 2 . So 𝐷 = 0 . Therefore 

ℋ𝒞  1(𝒜, 𝒜∗) = {0} . Thus the theorem is proved.            

 

References  

Ghlaio H. M., (2018),Cyclic weak amenability of some commutative 

semigroup algebras, Journal of Science, 07, 35-38. 

Ghlaio H. M. and Read C. J., (2011), Irregular abelian semigroups with 

weakly amenable semigroup algebra, Semigroup Forum, 82, 367-383.  

Dales H. G.,(2000), Banach algebras and automatic continuity, London 

Math. Soc. Monographs, Volume 24, Clarendon press, Oxford,.  

 

 

 


